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This review provides a disuion of cancer risk assessment methodology pertinent to devoping
a strategy for extremely low frequency electric and magnetic fields (EMF). Approaches taken for
chemical agents or ionizing radiation in six key topic areas are briefly rewed, and then those
areas are examined from the perspective ofEMF, identifing issues to be addressed in devoping
a risk assessment strategy. The following recommendations are ofered: 1) risk assessment should
be viewed as an iterative process that informs an overall judgment as to health risk and consists
of a complex of related activities incorporating both positive and negative data, tumor and non-
tumor end points, and human and nonhuman sources of information; 2) a hazard identificaton
resulting in a conclusion ofweak or null effects, such as may be associated with EMF, will need
to assign significant weight to animal cancer bioassays conducted under defined exposure condi-
tions as well as to human epidemiologic studies; 3) a default factor to account for possible age
differences in sensitivity to carcinogenesis should be included in an EMF risk assessment; 4) lack
of evidence ofdose response and the apparent lack ofDNA reactivity ofEMF suggest that a safe-
ty (or uncertainty) factor or margin ofexposure type of risk characterization may be most appro-
priate; and 5) an EMF risk assessment should permit at least tentative condusions to be reached
as to the limits of carcinogenic risk from exposure to EMF, and should also define an efficient
research agenda aimed at darifying uncertaities appropriate to a more complete assessment.
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Efforts at assessing all or portions of the
existing database of information relevant to
the possible carcinogenic potential of elec-
tric and magnetic fields (EMF) have gener-
ally concluded that there is a lack of consis-
tent evidence of human cancer risk from
environmental exposures (1-4). These
analyses have relied primarily on the large
existing database of epidemiologic studies.
As these groups point out, because of diffi-
culties in assessing exposures, potential bias
and confounding, as well as the inconsis-
tency of epidemiologic studies, much
uncertainty remains. Recent animal studies
point to the possibility that EMF, though
most likely nongenotoxic (5-7), may have
some potential to enhance the development
of neoplasia [reviewed by the National
Research Council (NRC) (2) and McCann
et al. (8)]. These promotion studies are
currently undergoing independent replica-
tion (9). In the next few years, results from
other carcinogenesis bioassays in animals
[see McCann et al. (8) for recent review],
as well as from new epidemiologic and in
vitro studies are also expected to become
available. With such a comprehensive data-
base available, it should be possible to con-
duct a more definitive analysis of the car-
cinogenic potential of EMF. In the United

States (10) as well as internationally
(11-13), programs are now in place that
have the goal of using these data to devel-
op comprehensive health risk assessments
for EMF.

Risk assessment encompasses a wide
array of techniques that should be helpful
in organizing the complex database on
EMF for maximal utilization in a compre-
hensive and, hopefully, definitive health
risk assessment. However, there are aspects
of both the emerging biological effects pro-
file and the exposure characteristics ofEMF
that raise unique problems for risk assess-
ment. To our knowledge, there has been no
comprehensive discussion of risk assessment
methodology as it might be applied in a
broad context to health effects data on
EMF.

There is no definitive general method
available for risk assessment. Though
efforts to achieve scientific consensus on
general principles for cancer risk assess-
ment have been common [e.g., (14)] and
risk assessment has been routinely used in
conjunction with regulatory decision mak-
ing for some years [see the historical review
by Albert (15)], methods have never been
consistently applied among the various reg-
ulatory agencies in the United States (16),

nor have the same approaches been taken in
different countries (17-20).

In the United States, the EPA has taken
a lead role in developing and implementing
cancer risk assessment procedures on a large
scale. The agency formally adopted a risk
assessment procedure in 1986 (21), which
has become the standard of comparison in
the field. However, over the past 10 years, a
body of knowledge has accumulated that
has precipitated an intensive reexamination
of such so-called standard procedures. This
new knowledge primarily involves changing
ideas about cancer mechanisms, particularly
about what is rate-limiting in carcinogenesis
that may be subject to influence from envi-
ronmental exposures; increasing awareness
of the ubiquity of chemical carcinogens in
the natural as well as the man-made envi-
ronment; and increasing understanding that
a significant number of cancer-causing sub-
stances do not interact directly with DNA.

National debate on the place of risk
assessment in regulatory decision making
has led to a congressionally mandated
Commission on Risk Assessment and Risk
Management (22), to reexamination of risk
assessment procedures by a Committee of
the NRC on Science and Judgment in Risk
Assessment (23), and to the recent release of
a proposed revision of cancer risk assess-
ment guidelines by the EPA (24). All of
these efforts advocate less emphasis on stan-
dard default procedures, a substantive role
in risk assessment for a much wider range of
data sources than in the past, and less
reliance on quantitative risk estimates using
highly uncertain dose-response extrapola-
tion procedures. These reports are bench-
mark efforts around which reformulations
of government mandated approaches to risk
assessment are likely to coalesce in the next
few years.

It is our aim to contribute to these dis-
cussions, focusing on scientific issues rele-
vant to assessing potential cancer risk from
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exposure to EMF. We discuss six key topic
areas: 1) variability between different
human populations or individuals; 2)
extrapolation between animals and
humans; 3) the choice of an appropriate
dose metric; 4) dose-response assessment
and risk characterization; 5) the use of non-
tumor response data in risk assessment; and
6) the uses of epidemiology in risk assess-
ment. [Exposure assessment, an area critical
to developing a risk assessment strategy for
EMF, is not addressed in this review. For
recent discussion of this topic, see Bracken
et al, (25).] In a concluding section we
offer several general recommendations that
may help to guide the selection of risk
assessment strategies for EMF.

The Issue of Uncertainty and
the Selection of Defaults
The subjective nature of risk assessment has
increasingly come under scrutiny. While
both the NRC Committee on Science and
Judgment in Risk Assessment (23,26) and
the EPA, in their newly proposed guide-
lines (24), stress the importance of convey-
ing the sources and, where possible, the
amount of uncertainty in each risk analysis,
of greatest concern are errors that do not
have a statistical basis and are due to a lim-
ited understanding of carcinogenic mecha-
nisms and biological processes. Though
some techniques for dealing with this type
of uncertainty do exist (27-31), they are
inherently limited because, until greater
understanding of carcinogenic mechanisms
emerges, criteria used by these techniques
to assign certainty and plausibility are
themselves subject to uncertainty.

The traditional approach for dealing
with uncertainty without a statistical basis is
to use so-called defaults, as originally sug-
gested in 1983 by the NRC (32). The EPA
has consistently relied heavily on the use of
defaults, although other organizations use
them either not at all or sparingly, relying
more on general principles of analysis and
expert consensus (17,33,34). While the
recent NRC Committee on Science and
Judgment in Risk Assessment recognized the
necessity of using defaults, they criticized
earlier practices, suggesting that increased
attention be given to more precisely identi-
fying and providing scientific and policy jus-
tifications for each default and for criteria
guiding departures from defaults (35,36).

Thus, an initial area of focus in develop-
ing a risk assessment strategy for EMF will
be first to determine the degree to which
the analysis will rely on the use of defaults
and, second, to select and define default
options considered necessary. We discuss
below three general areas where the adop-
tion of defaults for EMF may be needed.

Variability between Different
Human Populations or Individuals

Interpopulation or interindividual variabili-
ty includes differences such as increased
sensitivity of children and the aged as com-
pared to healthy adults, differences
between men and women due to hormonal
factors, and differences due to the appar-
ently wide distribution of genetic polymor-
phisms in a variety of traits that affect sen-
sitivity to carcinogenesis (37-40).

Interpopulation or interindividual dif-
ferences in sensitivity to EMF are not well
documented. For example, laboratory stud-
ies to determine whether some individuals
are unusually sensitive to the presence of
electromagnetic fields have produced con-
flicting results [reviewed by Knave (41)].
However, interindividual variation in sensi-
tivity to chemical agents is well documented
(42,43), and there is no reason to believe
that analogous differences do not exist for
EMF. This inference is supported by several
lines of suggestive evidence. First, epidemi-
ologic studies reporting a positive associa-
tion between EMF surrogates and leukemia
suggest that there may be greater sensitivity
among children [for review see NRC (2)
and Kheifets and Kelsey (44)]. Second, it
has been suggested that EMF may act
through a receptor-mediated mechanism
[see Kavet (45) for review] and may under
certain conditions stimulate cell prolifera-
tion. Because genetic polymorphisms in cel-
lular processes such as the control of cell
proliferation and affinity differences of
receptors involved in receptor-mediated car-
cinogenesis of agents such as TCDD, estro-
gens, and peroxisome proliferators have
been observed (46), it is not unlikely that if
a receptor-mediated mechanism is estab-
lished for EMF, similar interindividual dif-
ferences may exist. And, third, blood levels
of melatonin vary greatly among different
individuals (47), and suggested effects of
extremely low frequency (ELF) electric or
magnetic fields on the production of mela-
tonin in experimental animals are the basis
for a hypothesis (48), albeit uncertain
(49-53), that reduced melatonin levels
resulting from exposure to EMF may pro-
mote cancer in exposed individuals.

Should it be determined that use of a
default assumption for interindividual/inter-
population variability is warranted for EMF,
there is precedent for its use in regulatory
practice. In the past, the primary use of
interindividual/interpopulation defaults has
been in conjunction with the regulation of
noncarcinogens, and the magnitude of
default factors used offers some precedent to
assist in the selection of a default factor for
EMF. For many years, regulatory agencies

using a margin of safety (MOS) approach to
regulate noncarcinogens have routinely used a
10-fold uncertainty factor to account for
intraspecies variation [reviewed by Johannsen
(54)]. There is some experimental support for
the magnitude of this uncertainty factor from
laboratory studies with inbred rodent strains
(55). However, differences in sensitivity to
specific agents can vary over a much larger
range (56), thus emphasizing the importance
of better understanding the magnitude of
possible interindividual or interpopulation
differences in sensitivity to EMF effects.

Recently, the NRC Committee on
Science and Judgment in Risk Assessment
(23) recommended that default assump-
tions to account for interindividual varia-
tion be included in cancer risk assessments.
In its proposed guidelines (24), the EPA
recommended the inclusion of a default
uncertainty factor of 10-fold to account for
interindividual variation in sensitivity for
those carcinogens assessed by a margin of
exposure (MOE) risk characterization
approach, but not for carcinogens assessed
using quantitative extrapolation below the
observable dose-response range. Thus, fol-
lowing the proposed EPA protocol, a
default uncertainty factor of 10-fold would
be appropriate to apply in an EMF risk
assessment, provided an MOE type of risk
characterization approach is chosen. (See
the section on Dose-Response Assessment
and Risk Characterization for further dis-
cussion on choosing a risk characterization
approach for EMF.) Should sufficient
information be available to conduct a risk
analysis based on data from sensitive sub-
groups such as children, a default factor
would not be necessary.

Extrapolation between Animal
Cancer Tests and Humans
Traditionally, long-term bioassays in rats
and mice have played an important role in
risk assessment, secondary only to epidemi-
ologic studies. Because epidemiologic stud-
ies linking EMF exposure to human cancer
are generally considered not to be definitive
(2), the results of animal cancer tests con-
ducted under controlled laboratory condi-
tions and over a wide range of exposure
conditions are likely to be important in a
risk assessment of EMF. The results of a
number of such studies will soon be avail-
able [see McCann et al. (8) for review].
Therefore, in developing a risk assessment
strategy for EMF, it will be important to
consider the degree to which new develop-
ments in risk assessment may affect
assumptions made as to the qualitative and
quantitative predictivity of animal tests for
results in humans and whether the unique
features ofEMF require specific attention.
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A basic assumption in hazard assess-
ment is that long-term bioassays in rats and
mice are valid tests that provide reliable
and relevant information concerning car-
cinogenic potential in humans [see
Tomatis et al. (52) for review)]. Recently,
however, largely as a consequence of the
analysis of a large database of animal cancer
test results produced by the National
Toxicology Program (NTP), observations
have pointed to complexities in the results
and stimulated questions regarding the pre-
dictive value of long-term bioassays in rats
and mice (58-62). On the one hand are
concerns (see Dose-Response Assessment
and Risk Characterization) regarding possi-
ble artifacts due to the use of very high,
near toxic doses [(i.e., the maximum toler-
ated dose (MTD)]. On the other hand, few
chemical carcinogens have been observed
to induce cancer at doses considerably
below the MTD (63,64), and tests con-
ducted at such doses have traditionally not
been considered valid predictors of human
carcinogenesis because of the statistical
insensitivity of animal bioassays [see EPA
(21,24) for general discussion].

Most animal cancer tests of EMF are
being conducted at magnetic field exposure
levels far below those that would corre-
spond to an MTD (although at levels
100-10,000 times the exposure levels sug-
gested as possibly carcinogenic by some epi-
demiologic studies) (3,8). This is a unique
situation. On the one hand, the use of such
doses obviates the need to consider uncer-
tainties associated with positive results
obtained at near toxic doses. On the other
hand, if results of such tests are negative,
concerns about the predictive value of ani-
mal tests conducted at doses far below toxi-
city will need to be addressed in considering
the relevance of these results to human risk.
A second factor that will need to be

considered is the choice of an appropriate
methodology for translating quantitative
results of animal cancer tests of EMF
(whether it be a potency calculated from a
positive test or a less than potency value
determined from a negative test) to expect-
ed results in humans.

Because ELF electric and magnetic fields
are physical agents, it may be of interest to
examine whether extrapolation procedures
that have been used to predict carcinogenic
effects of ionizing radiation in humans from
results in animals might find application for
EMF. Methods that have been used to
extrapolate between animals and humans for
ionizing radiation [reviewed by the NRC
(65) and Storer et al. (66)] are quite different
from the default methods commonly used
for chemical carcinogens. Two methods that
may be useful to consider in developing a

species scaling methodology for EMF are the
use of scaling factors based on differences in
lifespan (67) or direct extrapolation with no
scaling factor using a relative risk model (66).

Species scaling factors most commonly
used in carcinogenic risk assessments of
chemical agents are based on empirical evi-
dence primarily involving pharmacologic
considerations (68-72). These methods use
the basic equation

Y= aWn (1)

where a and n are associated with the bio-
logic function Y, and W refers to body
weight. In the case of carcinogenesis, Y
may be any measure of potency, such as the
applied dose (usually expressed as mil-
ligrams per kilogram per day) of carcinogen
required to induce a particular tumor inci-
dence. The superscript n may correspond
to assumptions regarding the proportional-
ity of potency to either body weight (n =
1), surface area (n = 0.67), or metabolic
rate (n = 0.75).

It is clear that pharmacologic criteria
that have been used to develop default
interspecies scaling factors for chemical tox-
icants are not appropriate for EMF.
However, pharmacologic criteria such as
blood concentration may have some analo-
gy in the extensive studies that have been
conducted to determine currents induced in
various body areas of different species by
externally applied electric fields (73,74) (see
The Choice of an Appropriate Dose Metric
for further discussion). In fact, Equation 1
has been used to scale short-circuit currents
produced by externally applied electric
fields between species, using the criterion of
equivalency in effective surface area (75),
where effective surface area takes into con-
sideration the erectness of posture when
scaling between species. The internal cur-
rent density induced by a vertically polar-
ized external electric field acting on the
body surface of grounded humans is
3.7-4.7 times greater than the internal cur-
rent density due to the same external field
acting on a rat (74). Again, with some anal-
ogy to the pharmacokinetic distribution of
chemicals, anatomically detailed models of
various species reveal great differences in
induced currents in different parts of the
body. For example, in humans and rats
exposed to vertical 60-Hz, 10-kV/m electric
fields, the axial current densities in the neck
and ankle, respectively, are 550 and 2,000
nA/cm2, a 3.6-fold ratio (human), and 40
and 1,100 nA/cm2, a 27.5-fold ratio (rat)
(74). Thus, for externally applied electric
fields, the species scaling factor will vary
depending upon which body part is of
interest.

Species scaling considerations also apply
for currents induced by externally applied
magnetic fields (74). Magnetic fields induce
different electric currents in the tissues of
humans and animals because of differing
body size and shape. The actual scaling fac-
tors depend upon the electrical properties of
the tissue in question and the specific details
of the anatomical model. The accuracy of
the calculated scaling factors also depends
on the effectiveness and validity of the com-
putational model employed. For 60-Hz
magnetic fields, typical calculations indicate
that the average induced currents are about
five times greater in humans than in rats for
the largest current loop in the torso. A cur-
rent scaling ratio of about 10:1 is calculated
for humans and mice. For recent examples
of such calculations, see Xi et al. (76) and Xi
and Stuchly (77). Thus, species scaling fac-
tors will vary depending on whether electric
or magnetic fields are employed.

In developing species scaling factors for
EMF, it will also be important to take into
account the fact that the same scaling factors
will not accommodate all proposed mecha-
nisms of action. Thus, factors based on
induced currents will not be suitable if bio-
logical effects are believed to be due to direct
coupling mechanisms (not involving induced
electric fields) such as magnetic field effects
on the rate of radical pair recombination,
magnetic field coupling to magnetite, or the
interaction of magnetic fields at certain
hypothesized resonance frequencies affecting
either calcium ion movement through mem-
branes or calcium binding to proteins.

The Choice of an Appropriate Dose
Metric
In the field of chemical carcinogenesis, the
most commonly used default dose measure
for oral exposures is the lifetime average
daily potential dose, in milligrams per kilo-
gram body weight. Potential dose is
defined as the amount of substance ingest-
ed, inhaled, or applied to the skin. It is
thus subtly distinguished from applied
dose, which is the amount of substance at
an absorption barrier, i.e., actually available
for absorption (78). The lifetime average
daily dose metric does not take into
account dose-rate effects, which as the EPA
points out (24) could be significant, espe-
cially for short-term, high exposure scenar-
ios. However, in the absence of data to the
contrary, the EPA suggests use of this
default average daily dose metric. Because
chemical carcinogens must be absorbed,
and many are metabolically processed prior
to reaching the target tissue, two other dose
metrics may also be used, provided ade-
quate data are available. As defined by the
EPA (78), these are internal dose (the
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amount of agent crossing an absorption
barrier through uptake processes) and
delivered dose, or biologically effective dose
(the amount of agent available for interac-
tion with a target organ or cell, often stated
as the concentration of the agent in the tar-
get tissue). The determination of these
more refined measures of dose for chemical
carcinogens is a major area of research and
discussion that has been addressed by the
development of various physiologically
based pharmacokinetic models (79-81).

In contrast to chemical agents, the
choice of a dose metric, or metrics, for
EMF effects is complicated both by the
biophysically complex nature and variety of
EMF and by the variety and uncertainty of
experimental evidence linking any direct
measure of EMF to biological effects asso-
ciated with carcinogenesis. Below, we dis-
cuss each of these aspects as they relate to
the selection of dose metrics for EMF.

Biophysical aspects. Although the phys-
ical techniques for measuring EMF are well
developed, adequate characterization of
EMF in biological systems is complex
(74,82). Power frequency EMF of 50 Hz
or 60 Hz have both an electric field com-
ponent (usually measured as field strength,
in volts per meter) and a magnetic field
component [usually measured as flux den-
sity, in tesla (T) or gauss (G; IT = 104
Gauss)]. The concept of electric field
describes the force exerted by charged par-
ticles. Magnetic fields are associated with
moving electric charges, most commonly
electric currents. Since both electric field
strength and magnetic field flux density are
vectors, their complete description requires
that direction as well as magnitude be spec-
ified. Furthermore, depending on the phase
angles of dimensional components, fields
can either be linearly or elliptically polar-
ized. In addition, typical power-frequency
fields consist not only of the fundamental
frequency components at 50 or 60 Hz but
also of additional components called har-
monics at frequencies that are integral mul-
tiples of the fundamental frequency.

With some analogy to the stratification of
dose metrics used for chemical agents (poten-
tial, applied, internal, and delivered), EMF
may be measured as unperturbed external,
surface, or internal fields. Unperturbed exter-
nal fields are unperturbed by the presence of
the biological target system; that is, they are
measured or calculated without the subject
present. Surface fields can be defined func-
tionally as fields that are at the exterior sur-
face of the body. Surface electric fields pri-
marily act on the body surface and are on the
same order ofmagnitude as unperturbed elec-
tric fields. Surface electric fields penetrate into
living tissue but at tremendously reduced

intensities. Magnetic fields are largely unper-
turbed by the presence of biological objects,
so that both a surface magnetic field and
internal magnetic field have the same magni-
tude as the external magnetic field. Internal
electric fields are due to effects of both the
external and surface electric fields and mag-
netic fields. Compared to the unperturbed
external electric field, the electric field
strength inside the body is reduced by a factor
ranging from 10,000 to 1 million depending
on the geometric configuration of the body
area measured. For example, using human

models exposed to a 10-kV/m field at ground
level directly under a 765-ky transmission
line, internal fields of 0.7-54 mV/m have
been measured (73). Static magnetic fields
(such as those present at the surface of the
earth) do not induce electric field currents as
long as the body and the static field source are
stationary relative to one another. (Normal
body motion in the presence of a geomagnet-
ic field induces currents and voltages compa-
rable to those induced by a 1 pT 60-Hz
field.) Time-varying magnetic fields [such as
sinusoidal alternating current (AC) fields]

Table 1. EMF effects on biological systems considered to be credible by the National Research Council
(NRC) Committee on Possible Health Effects of Exposure to Residential Electric and Magnetic Fields'

In vtro stuoies: specmc
features in cellular
signal-transduction pathways
Changes in ODC activiyhb .1QTC

Changes in intracellular calcium
concentraton

>50 gTd

Effects on other signal transduction-related
events (except changes in calcium,
which is discussed separately) were not
considered bythe committee to be
independently replicated
The committee indicated that only
experiments on thymic lymphocytes in
which Con-A stimulated cells showed a
change in calcium transport met
independent reproducibility requirements

MuuIevIuUII@. uIuU, UorIiIIIIeW UcarIoUUAJIasU, WtIo-A, cUncanavaUiin A; AIU, rernating current.
'Except as indicated, Table 1 reflects the summary judgment of the NRC Committee on the Possible Health Effects of Exposure to Residential
Electric and Magnetic Fieids (2 as expressed in the executive summary of that report the committee also concluded that thare was no con-
vincing evidence of genotoxic effects, effects on reproduction or development or effects on gene expression and protein synthesis from
exposure to ELF fields.

,ased onthe commiee's discussion in the body of the report,we have inferred thatthe "specific feature' referred to in the executive sum-
mary is changes in ODC actvity.
'This value was reported in the executive summary of the NRC report In the body of the report, the conditons under which the two studies
discussed as providing credible evidence of effects on ODC activity were conducted were 0.1 mV/cm (15JC and -Hz, 10pT (15.
drhis value was reported in the execute summary of the NRC report In the body of the report, three stdies were lised as meetng inde-
pendent reproducibility requirements; two of these, Walleczek and Budinger (154, in which astidcally significant effects were deected
using a 3-Hz pulsed magnetc field wih peaklux densites atS.5 or 28 mT, and Yost and Uburdy({53 in which effects were detected using a
16-Hz, 42.1 itT magnetc field with co-linear static magnetc field of 23.4 gT, appear in Table A3-2 inthe committee report
"The executive summary did not include an exposure level;the value reported is from Lfscher at al. (91).
fThe committee did not evaluate bone healing in humans.
#lhis value was reported in the executive summary of the NRC report the conditons under which the studies evaluated by the committee
were conducted wore 0.1-15 mT, 1-101 mA/cm'.
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generate their own electric fields internally in
biological systems through magnetic induc-
tion, according to Faraday's Law. These
internal fields result in induced currents
termed eddy currents. Induced currents are
measured in milliamps per square centimeter
(mAIcm2). Currents induced by most envi-
ronmental exposures to magnetic fields are
believed to be smaller than currents that are
endogenously present in the body (82).

It should be clear from the above dis-
cussion that the determination of magnetic
flux density inside the body is straightfor-
ward because it is equal to the external flux
density. However, the determination of
electric field strength inside the body is
complex since it represents the combined
effect of external and surface electric fields
as well as induction by magnetic fields.

A variety of dose metrics have been sug-
gested for EMF, most commonly measures
related to field strength such as time-weight-
ed average field strength, time exposed to
field strengths above a certain threshold level,
time exposed to field strengths within certain
intensity windows, or the rate of change of
field intensity. Other measures such as the
frequency and intensity of switching tran-
sients or measures that are restricted to cer-
tain frequency windows have also been dis-
cussed [e.g., see Morgan and Nair (83)]. The
fact that several studies examining correla-
tions between various dose metrics based on
field strength have produced weak or variable
results (84-88) underlines the importance of
the proper selection of a biologically relevant
dose metric to define dose-response relation-
ships (89).

Biological aspects. The primary difficul-
ty in selecting a dose metric for EMF is that
the biological effects database does not pre-
sent an adequate or consistent picture. The
experimental literature on biological effects
of EMF is enormous. Various aspects of
this literature have frequently been
reviewed. It is not our intention to evaluate
this literature. Recently, an expert commit-
tee of the NRC completed an extensive crit-
ical evaluation of a large part of the EMF
biological effects literature (2), and a brief
examination of the studies considered by
the NRC to be credible (see Table 1) will
make it clear that neither an adequate nor a
consistent picture is presented.

First, surrogate measures of exposure
have been used in many residential epidemi-
ologic studies that are only weakly correlated
to direct measurement of ELF electric and
magnetic field parameters. The NRC com-
mittee concluded that, in the aggregate, stud-
ies indicating a positive association which
used direct present-day measurement of
EMF were not convincing. The only resi-
dential epidemiologic studies considered by

the committee to demonstrate a consistent
effect used wire-code configurations as a sur-
rogate. Wire-code configurations may also
serve as surrogates for a number of environ-
mental factors unrelated to EMF [reviewed
by the NRC (X)].

Second, there is a lack of directly rele-
vant or independently replicated in vivo
animal carcinogenesis data that can be used
as the basis for the selection of a dose met-
ric. Although several long-term chronic
bioassays in which EMF exposure is being
carefully monitored are in progress [see
McCann et al. (8) for recent review], there
are currently no adequate data from such
studies that demonstrate either the pres-
ence or absence of a carcinogenic effect of
EMF. Furthermore, carcinogenesis promo-
tion studies involving mammary cancer in
rats that suggest an increase in tumor inci-
dence with increasing flux density (90,91)
have not been independently replicated.

Third, some biological effects of EMF
involving nontumor end points considered
by the NRC to be credible (such as behav-
ioral responses) have no apparent relation-
ship to cancer.

Fourth, tissue, biochemical, or hor-
monal changes produced by EMF that may
be related to carcinogenic processes have
not been clearly linked to adverse health
effects, nor is there any unique set of field
parameters that have been observed to pro-
duce these effects. Some biological effects
of EMF involving certain nontumor end
points could affect carcinogenic processes
and might therefore serve as indicators of
possibly relevant dose metrics. Examples in
Table 1 are effects on melatonin, signal
transduction-related pathways, particularly
ornithine decarboxylase (ODC) activity,
and calcium movement. Data not included
in Table 1 also suggest that, under certain
conditions, sinusoidal magnetic fields may
stimulate cell proliferation in vitro (2,92).
However, very different exposure parame-
ters have been observed to produce these
effects (see Table 1 footnotes).

Thus, based on the analysis of the NRC
committee (2), an adequate biological basis
for selection of a dose metric for EMF does
not exist at present. In spite of the lack of
convincing data demonstrating carcinogenic
or related effects in biological systems, some
attempts have been made to elucidate the
shape of dose-response curves using actual
biological effects data and various dose met-
rics. For example, Juutilainen et al. (85) used
epidemiologic data on early pregnancy loss
and several dose metrics based on field
strength, and tested the goodness of fit of
these data using several dose-response mod-
els. While of some methodological interest,
such studies contribute litdle to the selection

of a dose metric because the biological effects
data used were not statistically significant or
independently replicated. Thus, the absence
of a biological basis for the selection of a dose
metric, combined with the variety of options
for dose metrics offered by the biophysical
complexity of EMF, indicates that it will
most likely be necessary to adopt a set of
default dose metrics for risk analysis. If defin-
itive evidence of biological effects relevant to
carcinogenesis becomes available, those data
should provide a basis for establishing pre-
ferred options. If such data are not available,
regulatory interest (e.g., widespread exposure
or concerns about occupational exposures) or
the feasibility of exposure determination
(e.g., the availability of instrumentation and
methodology for measuring personal time-
weighted average magnetic field exposures)
may guide the selection of defaults.

Dose-Response Assessment and Risk
Characterization
The outcome of a dose-response assessment
is almost always some measure of potency.
Examples of potency descriptors that have
commonly been used for chemical agents
are shown in Table 2. These potency
descriptors include nonextrapolated mea-
sures, relative potency descriptors, and
extrapolated measures. The use of a nonex-
trapolated measure of potency is consistent
with a safety (or uncertainty) factor
approach to risk characterization. The use of
an extrapolated measure of potency is com-
monly applied in conjunction with the cal-
culation of risk from extrapolated slope val-
ues and environmental exposures of interest.
Several examples of these two general
approaches to risk characterization that have
been used for chemicals are in Table 3.

From a regulatory standpoint, whether
or not a potential carcinogen is considered
to be genotoxic or to interact directly with
DNA can have a significant bearing on
whether a safety factor or low-dose extrapo-
lation risk characterization is employed.
Scientific justification for the application of
this criterion is uncertain and complex, and
approaches taken among different regulato-
ry bodies vary. Because the preponderance
of evidence indicates that EMF are not
genotoxic and do not appear to interact
directly with DNA [see McCann et al. (6)
for recent review], it will be important to
understand this criterion and how it may be
applied in selecting a risk strategy for EMF.

While some countries do not use a criteri-
on of genotoxicity or DNA reactivity to select
a risk characterization approach (18), other
countries such as the Netherlands (93) have
used this criterion for some time. In such cases
it is usually assumed, despite uncertainty [see
Barrett (94) for discussion], that nongenotoxic
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The ratio of doses of two different
types of radiation required to produce
the same effect. In radiaton biology,
usually expressed relative to a standard
LET (linear electron transfer) value

Used for many years in radiaton biology;
a related approach (relative potency) has
been suggested for use with EMF

Toxicity equivalence
factors.ITEFs)

A relative measure of toxicity
determined by dividing an observed
potency value for a substance of
interest by the potency for a related
substance, which is used as a standard
reference

Developed by the EPA for use with
chemical groups such as dioxins, PCBs,
and PAls, which are structurally related
and believed to act through the same
mechanism but for which adequate
carcinogenesis data may only exist for
one or a few members of the group

Abbreviations: NTP, NatonsfTaxicolQgy Program; EMF, electric and magnetc fields; PCBs, polychlorinated biphenyls; PAHs, polycyclic aromatic hydrocarbons.
'This is not an exhaustive lisit bui tsitiuld deomonstrat the variey of approaches that have been applied.
HA varEiety Mauasrmaddi ire .veahbs fr esimafing' epolatd bpe Valuas, inclgrmieair, mechanistc (e.g., multhit multstge), tolerance disftibuton (e.g., Weibult, Gamma-mulhkl), time-to-tumor
(e.g.i lognormalt mi, taeo-IEioll d biblsglieiy rbtiv models (e.g. Moogskir-Knuduonl I[foreWoew. see (541.

mechanisms are reversible, resulting in
dose-response curves characterized by a

threshold [e.g., see Whysner and Williams
(181, and that genotoxicity mechanisms are

irreversible, resulting in dose-response curves

characterized by linearity at low doses (95,96).
If a threshold mechanism is believed to apply,
a safety factor risk dcaracterization approach is
chosen. If a nonthreshold mechanism applies,
a low-dose extrapolation procedure is used.

Until recently, the EPA has reserved the
use of safety factor approaches for noncar-

cinogens (see examples in Table 3) and has
used a low-dose extrapolation approach for all
carcinogens, regardless ofwhether there is evi-
dence for genotoxicity or DNA reactivity
(21). In their newly proposed guidelines, the
EPA has modified this position. They have
proposed an approach in which evidence for
"gene mutation due to DNA reactivity" is

used as a means of determining whether risk
characterization approaches involving a

default linear dose-response extrapolation or

a default MOE/MOS approach will be used
(24). If there is evidence supporting DNA
reactivity, the EPA proposes to use the former
approach. In the absence of such evidence,
the latter safety factor approach is proposed,
provided there is additional evidence support-

ing a nonlinear mode of action. In the
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Table 3. Risk characterization approaches

The calculation of risk from
extrapolated slope values
(such as ql* ) and environmental
exposures of interest

Excess individual lifetime risk [the
product of ql* and an exposure (in
mg/kg body weight per day) of interest]
1ff6 risk (the dose corresponding to a
particular level of individual lifetime
risk, in this case 10-6)

Population risk (the excess number of
cancers in an exposed population,
the product of individual risk, and the
total number of individuals at risk)
Unit risk (excess lifetime risk due to
continuous constant lifetime exposure
of one unit of carcinogen concentration);
primarily used by the EPA for air
contaminants

Used extensively in the United States

Safety, or uncertainty
factor approaches
Margin of exposure (MOE)

Human exposure/
rodent potency (HERP)

Margin of safety (MOS)

The ratio of a minimum dose value
corresponding to a carcinogenic
response (the EPA suggests the
LED10) to the dose corresponding to
an environmental exposure of interest

The percentage of the rodent potency
(TD50) received by a human during a
given lifetime exposure

A general approach indicating the use
of safety or uncertainty factors rather
than extrapolation
ADI (acceptable daily intake), the
daily intake of a chemical which
during an entire lifetime appears
to be without appreciable risk on the
basis of all known facts at the time

RfD (reference dose) or RfC (reference
concentration), estimates of a daily
exposure to the human population
(including sensitive subgroups) that is
likely to be without appreciable risk
of deleterious effects during a lifetime

In their newly proposed guidelines, the
EPA has proposed this approach for
carcinogens with nonlinear dose-
response curves

Used to rank animal carcinogens based
on human exposure; similar in concept
to the MOE and essentially its inverse

(24)

(168,169)

(54,156,172,173)

Used by the FDA in conjunction with
noncarcinogenic toxicants in food,
but has also been suggested
for use with carcinogens (170)

Calculated by dividing the NOAEL or
LOAEL by a set of uncertainty factors
to account for inter- and intraspecies
differences (100-fold), lack of chronic
data (10-fold), use of a LOAEL instead
of a NOAEL (3- to 10-fold), data quality
and completeness (3- to 10-fold), and a
discretionary modifying factor for other
miscellaneous uncertainties (1- to 10-fold)a

Abbreviations: LED1,, lowest effective dose associated with 10% risk; FDA, Food and Drug Administration; NOAEL, no observed adverse effect level; LOAEL, lowest observed adverse
effect level.
8For examples of the use of the RfD and RfC, see EPA 1171).

absence of such additional evidence, a default
linear extrapolation will still be employed.

On the one hand, the EPA's new propos-
al moves away from risk characterizations
based only on default dose-response extrapo-
lations because use of the linearized multi-
stage (LMS) model is no longer recommend-
ed, a case-by-case approach to dose-response
analysis that may involve biologically based
or case-specific extrapolation models is
emphasized, and an MOE/MOS approach
is accommodated in certain cases (24).
[Parenthetically, the NRC Committee on

Science and Judgment in Risk Assessment
(23) has recommended the continued use of
the LMS model.] On the other hand, the
proposal by the EPA to use linear low-dose
extrapolation as a generic default procedure
for dose-response curves without convinc-
ing evidence of nonlinearity (24) regresses to

the use of a procedure with even less justifi-
catory evidence than use of the LMS model.

The scientific justification for the use of
any default low-dose extrapolation procedure
with cancer bioassay data is tenuous. Because
of the highly uncertain nature of this
approach, the Commission on Risk Assess-
ment and Risk Management (22) recendy rec-

ommended that a safety factor approach be
used for all carcinogens. Scientific justification
for the use of a linear extrapolation model, as

proposed by the EPA (24), is particularly
problematic. First, complexities involved in
linking mutagenesis or DNA reactivity to car-

cinogenic mechanisms and in classifying
agents as genotoxic or nongenotoxic have been
well documented (42,94, 97-102). Second, it
is becoming increasingly evident that a signifi-
cant number of chemical carcinogens, even

some so-called genotoxic carcinogens, may act

primarily through mechanisms which do not

involve direct interaction with DNA, thus
producing dose-response curves that are not

linear, even at low doses (see examples and ref-
erences in Table 4).

Third, analysis of tumorigenesis
dose-response curves from the large database
of animal bioassays of chemical agents now

available indicates that a significant portion of
these curves are more consistent with a qua-

dratic rather than a linear dose- response

(103), that some dose-response curves

demonstrate saturation (104), that others
even demonstrate hormetic effects
(30,105,106), and further, that there is no

association between DNA reactivity and
dose-response curve linearity (103). Such
experimental observations may be limited to

analysis of test data obtained at near-toxic
doses or to the pharmacological aspects of
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Table 4. Mechanisms associated with carcinogenesis'

General classification Mechanisms Example agents
Mechanisms that involve heritable genetic
or epigenetic changes
Direct interaction with DNA
leading to genetic changesb

Indirect interaction with DNA
leading to genetic changesb

Heritable epigenetic alteration of
gene. expression

Alkylation
Frameshift mutagenesis
Clastogenesis
Gene amplification
Aneuploidy
Induction of enzymes resulting in metabolic actvation
of an endogenous or exogenous genotoxic agent

Interaction with DNA methyl transferase (non-DNA interactive)
or DNA methylating agents (DNA-interactive)

Transformation of mammalian cells in vitro

Methyl methanesulfonate, ethyinitrosourea
2-Acetylaminofluorene, benzo(a)pyrene
Ionizing radiation, metals, benzene
Arsenic
Asbestos, DESC
Aroclor 1254, phenobarbital

Ethionine, 5-azacytidine

lonizing radiation

Abbreviations: utE, aletnylsuDestrol; anT, outylated nyaroxytoluene; BMAI, outylatea nyaroxyanisole; rP,s, polycllorinnatea pneny's; Iln,mnyrwu-sumulaung nurmone; MA, 's-U-
totradecanoylphorbol-13-acetate; TGF-cz, transforming growth factor-a, EGF; epidermal growth factor, ODC, ornifftine decarboxylase.
'Includes mechanisms associated with any of the three ages of carcinogenesis: induction, promotion, and progression. Mechanisms resuling in neoplasia are not known with certainty; mechanisms listed are those
for which simnfifknt supportng evidence exilst in nonhuman systems. Mos of the example agents lied are associated with more than one mechanism; where possible we have listed agents nextto the mechanism
wih which they are moat commonly associated. Information in this table was compiled from several sources (4294,97-9 174-1774. The table is not intended to be an exhauative compilation, but to illustrate the vari-
ety of mechanisms associated wifth carcinogenesis.
bGenedc changes include gene mutations, chromosome rearrangements, gene amplification, and aneuploidy; some of these geneic changes, in particular gene amplification and anauploidy, are not detected by most
genotoxicity esays.
9Genotoxicity evidence is conflictng.

chemical carcinogenesis. (31,58,107-109).
Nevertheless, these observations emphasize
the tenuous nature of the evidence supporting
the use of generic dose-response models to
calculate potencies for chemical carcinogens.

It will be important to consider the rele-
vance of this information to the selection of
a dose-response assessment strategy for
EMF. As discussed above (see Extrapolation
between Animal Cancer Tests and
Humans), the data currently considered
most convincing regarding the possible car-
cinogenic potential of EMF appear to sug-
gest an effect at exposures far below those

which elicit acute or subacute toxic effects.
Therefore, distortions of dose response due
to toxicity are not likely to be a concern for
EMF. In addition, some exposures included
in a number of completed and ongoing ani-
mal cancer bioassays [see McCann et al.
(8)] are at or near human exposure levels,
thus precluding the need for extrapolation
far below the range of observable effects in
these cases. However, many exposures
included in animal bioassays do significant-
ly exceed human exposure levels, and the
issue of dose-response extrapolation will
need to be addressed in these cases.

For EMF, it is important to realize
that, at least as proposed by the EPA, if
dose-response extrapolation is determined
to be desirable for EMF data, a default lin-
ear extrapolation would be indicated unless
a convincing argument for nonlinearity is
presented. Therefore, an important area to
address in the development of a risk strate-
gy for EMF is the question of whether a
convincing argument for the likelihood of
a nonlinear dose response can be made.

On the one hand, dose-response curves
for EMF effects might be expected to be
simpler than those for chemical agents
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because electric and magnetic fields are
physical agents and would not be expected
to be subject to the same homeostatic
mechanisms as chemical agents. On the
other hand, probably the most compelling
argument for the expectation of a nonlinear
dose response for EMF is the absence of
convincing evidence for any potential to
interact with DNA (6). There is also some
suggestion in the published literature that
EMF may be capable of affecting biological
processes such as cancer promotion, induc-
tion of ODC, and cell proliferation (see
Table 1 and The Choice of an Appropriate
Dose Metric). It is not our intention to
evaluate these data, which must be consid-
ered uncertain unless independently repli-
cated, but to present them as an example
that illustrates that there is some evidence,
however tentative, for the ability of EMF
to enhance cellular processes associated
with carcinogenesis that are believed to
involve nonlinear mechanisms.

Two additional factors also support the
conclusion that a scientific basis for the use
of low-dose extrapolation methods in a risk
assessment of EMF effects does not exist at
this time. First, there are no plausible theo-
retical hypotheses or experimental biological
data suggesting relevant mechanisms of
action that could provide a basis for extrapo-
lation. A number of biophysical mechanisms
have been proposed to explain the interac-
tion of EMF with biological systems
(2,110,111). These include energy coupling
mechanisms, such as induced current effects;
direct force mechanisms, such as forces on
moving ions; mechanisms involving direct
force effects on ferromagnetic partides; reso-
nant mechanisms, such as ion cyclotron or
parametric resonance; free radical mecha-
nisms; and spatial and temporal signal-aver-
aging mechanisms. All of these theories suf-
fer either from serious theoretical difficulties
or a lack of experimental support in living
systems at field levels that are likely to be rel-
evant to human exposure (112). It is there-
fore premature to discuss how any particular
theory might suggest a dose-response
extrapolation strategy for EMF.

And second, endogenous electric fields
in tissues provide a background on top of
which induced fields must act to produce
effects in intact living organisms (113,114).
Endogenous fields, therefore, define a
threshold for the possible effects of induced
electric fields due to external magnetic or
electric fields.

Should adequate data become available,
it should therefore be possible to make a
convincing case for the use of a safety (or
uncertainty) factor type of risk characteri-
zation approach, such as an MOE/MOS
approach using potency measures similar to

one or more of the nonextrapolated or
comparative potency measures in Table 2
to describe tumorigenicity or other relevant
nontumor data on EMF. In fact, relative
potency descriptors have recently been sug-
gested for use with EMF (115,116). In
contrast, neither a scientific nor an empiri-
cal basis for the application of low-dose
extrapolation procedures to EMF effects
data exists, and in fact, such a basis is even
less well established for EMF than for
chemical agents. It will therefore be impor-
tant to carefully justify, and delimit, the
use of any dose-response extrapolation
procedures chosen as defaults for use with
EMF effects data.

The Use of Nontumor
Response Data in Risk
Assessment
As reinforced by formal sanction given in
the EPA's newly proposed guidelines (24),
greater emphasis is now being placed on the
use ofnontumor response data in cancer risk
assessment (69,109,117-119). In the EPA
proposed guidelines, nontumor response
data is accommodated in several ways. First,
the concept of hazard identification has
been expanded to include all pertinent
sources of response data in a more substan-
tive way than in previous guidelines. Such
data could include, for example, nontumor
response data indicating species specificity or
data suggesting a threshold mechanism of
action that might preclude extrapolation
from the observable range of tumor dose
response. Second, the EPA has proposed the
use of quantitative response effects preced-
ing tumorigenesis to enhance the analysis of
tumor dose response in both observed and
extrapolated ranges. Such effects might
include, for example, cell proliferation,
enzyme induction, or receptor binding.
And, third, the EPA has proposed the use of
biologically based or case-specific extrapola-
tion models that incorporate nontumor
response data, provided their relevance to
mechanism is supported by sufficient data.

There are as yet no standard methods of
using nontumor response data in quantita-
tive risk assessment. However, as illustrated
in Table 5, there are general approaches that
may be adaptable to specific cases, depending
on the quality and availability of appropriate
data. These indude 1) measurement of non-
tumor response parameters for direct use in a
mathematical model [reviewed by Thorsland
et al. (120) and Cohen and Ellwein (121)];
2) augmenting information on the likely
shape of the tumor dose-response curve at
low doses by determining the shape of a
dose-response curve for a nontumor end
point believed to be correlated with tumori-
genesis; 3) identification of threshold doses

required for nontumor effects believed to be
prerequisite for neoplasia; 4) measurement of
the same nontumor end point in the tissues
of different species or sexes to determine rela-
tive sensitivities for risk extrapolation; and 5)
reconstruction of a tumor dose-response
curve using response data for nontumor end
points as a dose surrogate.

The five general approaches discussed
above, while by no means exhausting the
ways in which nontumor response data may
be useful in risk assessment, suggest some
approaches that may be useful to consider in
developing risk assessment strategies for
EMF. As discussed previously, several pro-
posed biological effects ofEMF involve non-
tumor end points that could affect carcino-
genic processes (see Table 1). These indude
effects on serum melatonin concentrations,
ODC activity, calcium movement, and cell
proliferation. These nontumor end points
could in principle be incorporated into a risk
assessment strategy, provided experimental
or theoretical support emerges to provide
linkage to an overall mechanism of action of
EMF. For example, if a reduction in serum
melatonin concentration was considered to
occur prior to, and to be a prerequisite for,
promotional effects of magnetic fields as pro-
posed by Stevens (122), a minimally effective
dose could be determined using methods
such as that suggested by Gastel and Sutter
(123) (Table 5) or the benchmark dose
(BMD) approach recommended in the pro-
posed EPA guidelines (24). The same proce-
dures could be applied using other nontu-
mor response data provided a plausible
mechanistic linkage could be constructed.

Other potential applications of nontu-
mor response data for EMF are apparent by
analogy with the examples in Table 5. In
particular, it should be possible to use such
information to aid in determining species
sensitivity conversion factors by, for exam-
ple, comparing the potency of induction of
ODC by EMF in rat and human cells in
culture, using in vivo rat data to implement
a parallelogram approach. In addition, if
adequately defined dose-response curves
were available for nontumor end points
such as ODC induction, in principle, they
could be used to augment information on
the shape of tumor dose-response curves at
low exposures.

The Uses of Epidemiology in
Risk Assessment
Historically, when adequate epidemiologic
data have been available, they have assumed
a central role in both the qualitative and
quantitative aspects of risk assessment [for
example, see the EPA's 1986 risk assess-
ment guidelines (21)]. This emphasis on
epidemiologic data is reasonable, given its
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more obvious relevance to humans than
data from nonhuman sources. However,
this gain in relevancy is at a cost due to
methodological difficulties involved in the
conduct and interpretation of epidemiolog-
ic studies. A stricter control of experimental
conditions is more easily satisfied in the lab-
oratory setting in which most nonhuman
experiments are conducted (124-126).
Thus, whereas uncertainties associated with
nonhuman data usually center on inter-
species conversion and issues such as extrap-
olation below the near-toxic doses used in
animal studies, uncertainties attendant to
the use of human epidemiologic data are
often dominated by issues stemming from
difficulties in adequately defining exposures
and adjusting for potential bias or con-
founding factors.

In the EPA's recently proposed risk
assessment guidelines (24) there are two pri-
mary changes in the treatment of human
epidemiologic evidence: 1) there is greater
openness to a variety of uses of nontumor
response information in both the hazard
assessment and the dose-response assess-
ment phases of risk assessment; and 2) there
is increased einphasis on the need to include
all epidemiologic studies, both positive and
negative, in an overall evaluation of the car-
cinogenic potential ofany agent.

Examples of uses of epidemiologic data
in risk assessment that are consistent with
these policy changes are described in Table
6 and are discussed below.
1. Application of a range of weighting fac-

tors, including quality and causal criteria,
to individual studies as part of an overall
qualitative weight of evidence hazard
assessment. Quality and causal criteria rel-
ative to epidemiologic studies have been
fully discussed in the literature and we
will not address them further here. For
recent review see EPA (24), Kheifets and
Kelsey (44), Shore et al. (124), Hertz-
Picciotto (127), and Ahlbom et al. (128).
The three weight of evidence classifica-
tions recently proposed by the EPA (24)
exemplify an outcome of this type of
analysis. According to this new categoriza-
tion, while evidence from epidemiologic
studies demonstrating causality between
human exposure and cancer is still
required in order to consider that an
agent is a "known" human carcinogen,
the highest category designation has been
expanded to "known/likely" from earlier
more restrictive schemes (21) so that
agents for which epidemiologic studies do
not exist or for which epidemiologic evi-
dence is equivocal may still be assigned to
the "known/likely" category based on
nonhuman data only. Thus, under the
EPA's newly proposed guidelines, while

Table 5. The use of nontumor response data in cancer risk assessment8

General approach Examples References
Measurement of
nontumor response
parameters for direct use
in a mathematical model
of carcinogenesis

Augmenting information on
the likely shape of the tumor
dose-response curve at low
doses by determining the
shape of a dose-response
curve for a nontumor end
point believed to be
correlated with tumorigenesis

Identification of threshold
doses required for nontumor
effects believed to be
prerequisite for neoplasia

The use of data on the rate of formation and
size of hepatocellular foci in rats to estimate an
initiation rate for DNT. It was assumed that
preneoplastic lesions could be represented by
y-glutamyltranspeptidase-positive foci produced
in rats pretreated with subinitiation doses of
diethyinitrosamine followed by DNT. The number
of foci was considered to be related to both
the initiating and the promoting potential of
DNT, but size of the foci was considered to be
related only to the promoting potential of DNT.

The use of data on the shape of the dose-
response curve for DNA adducts produced by
2-AAF in mouse liver to justify modeling the
effect of 2-AAF on the probability
of initiation as linear
Measurement of the maximal binding capacity
of the EGF receptor in liver as a function of
TCDD dose to demonstrate that the receptor
binding response is hyperbolic at low doses. If
binding to the EGF receptor is rate limiting in
the neoplastic process induced by TCDD, this
result would suggest that cancer risk at doses
below the observable range would be higher
than predicted by a linear extrapolation from
observed tumor responses

Abrasive silicate crystals resulting from high
doses of sodium saccharin in male rats lead to
regenerative hyperplasia followed by bladder
tumors. Thus, the dose-response curve for
precipitation of abrasive crystals may be a
more useful end point for assessing cancer risk
than extrapolation from tumor dose response.
Determination of a BESTNOEL (minimal
effective dose) for CYPlA1 mRNA induction by
TCDD. CYPlA1 mRNA induction results from
the binding of TCDD to the Ah receptor and is
believed to be included in the pathway(s)
leading to TCDD-induced neoplasia. The
BESTNOEL is several orders of magnitude
below TCDD doses that have been observed
to result in hepatic carcinomas in rats.

(178)

(179)

(180,181)

(182)

(123)

continued, next page

positive evidence from epidemiologic
studies is still important in hazard assess-
ment, the well-known difficulties in
definitively establishing causation through
epidemiologic studies involving environ-
mental exposures has been taken into
account by softening the former absolute
requirement for positive epidemiologic
evidence in order to assign a potential car-
cinogenic agent to the highest weight of
evidence category. On the other side, a
similar expansion in data required to
assign a potential carcinogen to the cate-
gory suggesting noncarcinogenicity ("not
likely") has occurred. While "extensive
human experience that demonstrates lack
of effect" (24) will still result in a "not
likely" category assignment, appropriate
negative evidence from animal studies will
also suffice.

2. Application of a meta-analysis and com-
bined analysis of raw data (124,125,12$.

The procedures usually grouped under this
heading indude using results from multi-
ple epidemiologic studies in quantitative
procedures involving weighting individual
studies according to quality criteria and
assessing heterogeneity. Results may also
include the calculation of a summary risk
estimate and new confidence intervals
either using summary statistics based on
multiple individual studies or using a
pooled analysis with raw data. Application
of these techniques is not well developed,
and some attempts to simply obtain overall
risk estimates or confidence intervals by
combining summary statistics and the use
of subjective quality weighting schemes
have been criticized [see, for example, the
recent debate in the American Journal of
Epidemiology (130-133]. Despite difficul-
ties, these techniques offer a systematic
approach to identifying potential sources
of inconsistency and variability among
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Table 5. continued

General approach Examples References

Measurement of the same Histopathological comparison of TCDD toxicity (183)
nontumor end point in the to rat thymus and human thymus grafts in
tissues of different species SCID mice.b Allows a direct comparison of
or sexes to determine relative human and rodent tissue sensitivity to toxic
sensitivities for risk effects of TCDD in vivo.
extrapolation Comparison of the potency of induction of DNA (184)

adducts in mouse and human lymphocytes to
obtain a species sensitivity conversion factor.,
This general approach may be adapted to
inform the development of interspecies scaling
factors specific to particular agents using any
molecular, biochemical, or cellular end points
believed to be critical in pathways leading to
neoplasia, as long as the end points are
measurable in vivo or in vitro in both rodent
and human tissues.

Reconstruction of a tumor Application of the LMS dose-response (185-187)
dose-response curve extrapolation model to a reconstructed
substituting a surrogate dose dose-response curve for formaldehyde in
for the administered dose of which DNA-protein cross-links are used
carcinogenic agent as a surrogate for administered dose.

The use of this dose surrogate more accurately
reflects the tissue dosimetry of formaldehyde
than does administered dose, and also results
in a near 50-fold reduction in estimates of
human risk as performed by the EPA using
the LMS model.

Abbreviations: DNT, dinitrotoluene; 2-AAF, 2-acetylaminofluorene; EGF, epidermal growth factor; BESTNOEL, biologically
evaluated, scientifically tested no observed effect level; Ah, aryl hydrocarbon; LMS, linearized multistage.
&Not included in the table are examples of the use of qualitative experimental data in risk assessment, such as the use of evidence of geno-
toxic potential to buttress weight of evidence classifications of carcinogenic potental. The table is not intended to be an exhaustive compila-
tion; a few pertinent examples are included that have not yet formally been applied in cancer risk assessments.
bThough this particular study was intended to demonstrate the use of this technique for immunotoxicological risk assessment, the general
approach is also relevantto cancer risk assessment.
"This technique, known as the parallelogram approach, has been applied to estimate genetic risk to human germ line cells from data on
mouse germ line cell mutation rates.

studies (124,131,133). Guidelines for con-
ducting meta-analyses have recendy been
presented by a working group co-spon-
sored by the EPA (129). In Table 6, there
are two examples illustrating productive
uses of these techniques.

3. Verification of the plausibility of human
risk estimates derived from animal data.
Methods for using epidemiologic data in
such a comparison have been well
reviewed (124,127,134,135). Hertz-
Picciotto (127) describes the process as
including the following four steps: 1)
conversion of human exposures to the
units of exposure in the animal study; 2)
application of the calculated unit risk to
the doses received by the populations
studied; 3) adjustment of cancer rates
using a life-table analysis to account for
the partial lifetime observed in the epi-
demiologic study; and 4) comparison of
the numbers of deaths predicted from the
animal study with those observed in the
epidemiologic study. Two examples of
the application of this procedure are
shown in Table 6, in which comparison
of human risk estimates calculated from
rodent bioassay data for either ethylene
dibromide (136) or methylene chloride

(137) and risks derived from human occu-
pational studies were compared. In both
of these studies, predictions of human risk
based on results from the animal studies
were significantly higher than risks
observed in the epidemiologic studies.

4. Estimation of an upper limit of risk from
negative epidemiologic data [reviewed by
Wartenberg and Simon (138)]. This esti-
mation should be a routine component
in the analysis of any negative study. In
the well-known example in Table 6, the
statistical power of nine retrospective
mortality studies of vinyl chloride work-
ers were compared as a possible explana-
tion for conflicting study results (139).

5. The use of dose-response models to esti-
mate risk from epidemiologic data
(124,140,141). Much less attention has
been given to developing methods for
quantitative risk assessment using epi-
demiologic data than has been given to
models using animal bioassay data. There
are, however, some examples in the pub-
lished literature of the application to epi-
demiologic study results of both empirical
and biologically based models developed
for use with animal bioassay data; two
examples are described in Table 6.

6. Using a "time window" type of analysis to
define latency intervals. Shore and col-
leagues (124,125) have discussed the use of
epidemiologic studies to refine the tempo-
ral projection of risk in several populations,
such as cigarette smokers, asbestos workers,
and populations exposed to radon, for
which both exposure and disease informa-
tion are available over an extended time
period. The example in Table 6 involves a
case-control occupational study of lung
cancer among steel workers using years of
employment in a high exposure area as a
dose surrogate (142). Because exact latency
for most cancers is not known, such analy-
ses are often exploratory, but can be used
to further explore consistency of results.

7. Molecular epidemiologic approaches. The
use of nontumor response information in
risk assessment emphasizing data from
nonhuman or in vitro human sources was
discussed above. In principle, any of the
general approaches identified in Table 5
could be applied in humans. However, in
addition to the data limitations discussed
above, the application of some of the
approaches in Table 5 to the in vivo
human model is limited by ethical prohi-
bitions against invasive experiments or the
exposure of human subjects to potentially
toxic agents. In spite of these difficulties,
attempts are increasingly being made to
integrate population-based epidemiology
combining traditional clinical end points
with molecular biological approaches [e.g.,
see Newman et al. (143)]. These efforts
are uniquely valuable because they address
aspects of the risk assessment paradigm
that cannot be resolved using nonhuman
experiments. Examples of two general
approaches are provided in Table 6.
EMF. There are a number of character-

istics of EMF, associated environmental
exposure scenarios, and the current biologi-
cal effects database that complicate the
design of epidemiologic studies. These
characteristics are briefly discussed below.

Evidence of eflfc. As reviewed above (see
The Choice of an Appropriate Dose Metric),
lack of knowledge of the relevant exposure
(evidence of effect) makes epidemiologic
studies difficult.

Field characteristics. In contrast to chem-
ical agents, EMF are characterized by multi-
ple parameters (see The Choice of an
Appropriate Dose Metric) that may vary in
relation to one another depending upon the
exposure situation. Exposures in some occu-
pational studies, particularly those involving
electrical workers, are further complicated by
the presence of transients and possible expo-
sure to electric shocks. Thus, adequate char-
acterization of actual EMF exposures of dif-
ferent individuals within a study population
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Examples
The inclusion of results of epidemiologic
studies in the assignment of a potental
carcinogenic agentto knownrlikely," cannot
be determined," or 'not likely' hazard
classificatons oronosed bvthe EPA

3. To veritythe plausibility of human risk Comparison of human risk estimates calculated
estimates derived from animal data from rodent bioassay data and human

occupatonal studies for ethylene dibromide and
metffiiene chloride

5. Estimating rsk using dose-response
models

7. Molecular epidemiologic approacnes
To assist in accounting for inter-
indMidual differences in sensitivityto
carcinogenesis by measurng enzyme
activites or other physiological,
biochemical, or molecular characteristics
believed to be associated with
carcinogenesis in accessible cells or
tssues
To provide a molecular dosimeter
linking complex environmental exposures
to internal events believed to be
mechanistcally involved in
carcinogenesis. Such experments may
help to clarfy an effective dose that may
aid in establishing a truer indicaton of
dose-response shape and potencythan
can be achieved using generalized
extemal exposure measures

The use of several differenttypes of models to
analyze the same retrospective cohort mortalit
study of lung cancer in workers exposed to
cadmium
The use of a varety of empirical linear and
quadratic models to estimate riskfrom exposure
to low levels of ionizina radiaton

The measurement ofthe actvity of o6-
alkyldeoxyguanine-DNA alkyl transferase, a
DNA repair enzyme

The measurement of the inducibiliy of CYP1Al,
an important enzyme involved both in the
metabolic activaton of many environmental
carcinogens and in the binding efficiency of the
Ah receptor
The measurement of biomarkers of PAHs
in peripheral blood of children exposed
to environmental pollutants
The associaton of higher 4-aminobiphenyl
hemoglobin adducts in smokers as compared to
nonsmokers

Abbreviatons: Ah, aryl hydrocarbon; PAHs, polycyclic aromatic hydrocarbons.
'lbe uses liisd are notintsndedto be exhaustive, butshould illustretthevriut ofway in which epidemiologymay inform a r

may require complex multiparameter repre-
sentations that are difficult to determine.

Complex mxtures. Exposures ofhuman
populations available for epidemiologic
study such as electrical workers and residents
living near power lines may involve not only
EMF, which has been described as a com-

plex mixture (89), but also environmental
chemicals, radon, and in some cases ionizing
radiation. Environmental exposures to

chemical agents also common
complex mixtures, which must be
account in study design.

Ubiquity/multisource expe
humans are exposed daily to lo'
EMF in virtually all aspects of tk
residential, occupational, and re

This multisource exposure comi

selection of control groups and
cation of total exposure.

Weak potency of effect. All biological
effects ofEMF that have been observed, both

References in vivo and in vitro, are quite weak, as are
associations reported in epidemiologic stud-(24) ies. Epidemiologic studies may not be capable
of distinguishing between weak associations
and a null effect (144). And yet, because of
the ubiquity of EMF, the presence of a weak
association may be quite important from a
public health point ofview (135).

Association with cancers for which
other risk factors are unknown. The can-
cers most often associated with EMF expo-

. sure are leukemia and brain cancer (2,44),
two cancers for which the risk factors are
mostly unknown. Thus, there is an insub-
stantial basis on which to control for

(13;,137) potentially confounding factors such as
lifestyles, dietary habits, or hereditary pre-
dispositions in epidemiologic studies.

Exposure misclassification. An unknown
exposure metric, difficulties in exposure

;S>W;E>WWS assessment, and other factors, lead to expo-
sure misclassification, which could explain

(140) the lack of robust effects and inconsistencies
among studies.

Historical exposures. Difficulties in mea-
(65) suring present day exposures are further exac-

erbated in attempting to estimate ubiquitous
and unknown exposures from the past.

Possible nonmonotonic dose response.
g '...., Though evidence is limited [see Bowman

~ et al. (111) for discussion], so-called fre-
quency or intensity "window" effects have

(38,190-92) been proposed for EMF. A nonmonotonic
(193) dose response would make the characteriza-

tion of dose response using epidemiologic
(46194} methods more difficult and would result in
(4t;194) what might appear to be inconsistent epi-

demiologic results.
In determining which risk assessment

techniques may be helpful in analyzing
(195 198) existing epidemiologic results and aiding in

the design of future studies, the nine factors
(197) discussed above must be taken into account.

For example, the uncertainty and lack of
quantitative definition of dose response in
the current epidemiologic database suggest
that the application of quantitative models
to calculate risk estimates would be inappro-
priate (1,2). Other uses of epidemiology are
technically not yet feasible, such as molecu-

iuka,s.sumsnt lar epidemiologic approaches.
However, some uses of the current

ly involve EMF epidemiologic database in risk assess-
taken into ment appear to be well justified. First, epi-

demiologic study results should be an
)sures. All important part of a qualitative weight of
w levels of evidence hazard assessment by applying var-
ieir lives- ious weighting factors including quality and
creational. causal criteria [e.g., see Kheifets and Kelsey
)licates the (44)]. The factors discussed above, particu-
the specifi- larly the difficulty in measuring critical

exposure parameters and the likelihood of
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Table 6 Uses of epidemiologic data in risk assessment

General approach
1. To assist quaitaively in an overall
weight of evidence hazard assessment by
applying a range of weighting factors
including quality and causal criteria
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weak associations, detract from the ability
of epidemiologic investigations to defini-
tively establish a positive or a null effect.
Thus, while epidemiologic studies appropri-
ately play an important role in hazard iden-
tification aimed at establishing the presence
of a potent effect, a hazard identification
aimed at establishing the possibility of weak
or null effects should assign significant
weight to results of animal studies and other
in vivo and in vitro sources of information
as well as to results of epidemiologic studies.

Second, appropriate use of meta-analyt-
ic techniques should be very helpful in the
analysis of the very large database of epi-
demiologic results for EMF. In fact, a num-
ber of meta-analyses have been performed
using data from epidemiologic studies of
EMF effects (2,145-150). For example, the
NRC report on possible health effects of
residential exposure to electric and magnet-
ic fields included an assessment of the asso-
ciation between residential magnetic fields
and childhood leukemia using the tech-
niques of meta-analysis and concluded that
the results for wire-codes were more consis-
tent than those for measured fields (2).
Washburn et al. (149) performed an analy-
sis across 13 epidemiologic studies that
examined associations between residential
proximity to power lines and childhood
leukemia, lymphoma, and nervous system
tumors. Kheifets and colleagues used meta-
analytic techniques to explore sources of
heterogeneity across a large number of criti-
cally reviewed occupational studies that
examined associations between central ner-
vous system cancers (14/) or leukemia
(148) and occupational exposure to EMF.
All studies point to uncertainties concern-
ing exposure, bias, and potentially con-
founding factors, as well as issues of varying
study quality or heterogeneity that prevent
definitive conclusions. Thus, while such
efforts may have been helpful in organizing
results and conducting critical reviews, they
have not resolved with certainty questions
of potential risk from exposure to EMF. It
may be useful to consider to what extent
other meta-analytic approaches, such as a
"refutationist" approach (151) (see Table
6), might be applicable to the EMF data-
base.

Third, when results of ongoing animal
cancer tests of EMF become available, it
should be possible to use these results and
the existing epidemiologic database to pro-
vide a rough indication of whether the
results observed in the animal studies are
consistent with epidemiologic results. Such
an analysis should examine both positive
and negative studies, including a determi-
nation of the largest risk that could have
gone undetected in negative studies.

Conclusions and
Recommendations

In this review we have taken a broad view
of the subject matter of risk assessment. We
have emphasized that while a risk assess-

ment may include a quantitative estimate of
risk, given the current scientific and regula-
tory environment, this may be the excep-

tion rather than the rule. A risk assessment

may be as simple as a qualitative hazard
assessment, with virtually no quantitative
aspects; it may have some quantitative
aspects such as an assessment of the compa-

rability of results from animal bioassays and
human epidemiologic studies or a consider-
ation of the likely effect of species differ-
ences on potency; or it may have sophisti-
cated quantitative aspects such as the use of
multiple parameters in a biologically moti-
vated dose-response model or an analysis of
curve shape in the low dose region using
biochemical nontumor response data.
Which set of analyses a specific risk assess-

ment package includes will depend on the
nature of the available knowledge base rele-
vant to the agent in question and also on

the degree of public or regulatory interest in
the agent. The main point we wish to make
is that a risk assessment is not one proce-

dure with one outcome. It is a complex of
related activities, all of which inform an

overall judgment as to health risk.
A second point especially relevant to

EMF, given the current status of that data-
base, is that risk assessment is not just con-

cerned with positive results. The focus in
risk assessment is certainly on positive data
for agents clearly indicated to be carcino-
genic, for example, as in the case of the
known human carcinogens vinyl chloride
and ionizing radiation. However, the data-
base relevant to risk assessment for many

agents, including EMF, is complex, consist-
ing of a mixture of negative studies, poorly
reproducible positive results, and weak posi-
tive results (e.g., Table 1). As we have dis-
cussed in this review, the importance of
including all data (both positive and nega-

tive) in a risk assessment is being increasing-
ly emphasized by agencies such as the EPA
and expert committees such as the NRC
Committee on Science and Judgment in
Risk Assessment and the Congressional
Commission on Risk Assessment and Risk
Management.

It is therefore essential to fully under-
stand the manner in which negative data
may be used in risk assessment. Whereas
virtually every calculation made with posi-
tive data can be made using negative data,
provided the concept of dose is changed
from effective dose (or some related mea-

sure) to highest dose tested or to a highest

potency not detected determined by taking
the power of the assay into account, it is
not necessarily appropriate to make every
calculation possible using negative data. In
fact, it would be highly inappropriate to
make a number of them. However, some
calculations are clearly indicated. For
example, a comprehensive hazard assess-
ment should include calculations compar-
ing the EMF exposures tested in animal
bioassays to human exposures. Following a
basic principle of toxicology, a negative
animal bioassay would generally be judged
to be inadequate or limited unless the high
end of the dose range tested substantially
exceeded human exposures. Therefore, this
calculation should be applied to all animal
bioassays, whether the results are negative
or positive, as a criterion of adequacy. In
addition, when multiple studies of the
same or similar type are available, a com-
prehensive weight of evidence hazard
assessment should include a quantitative
analysis aimed at examining the consisten-
cy of results among the studies. For exam-
ple, depending upon the power of a nega-
tive study, it may or may not contradict
another positive study.

Thus, because the EMF database is large
and complex and consists of many negative
or poorly reproducible positive results, risk
analysis will require the establishment of
rigorous and thoughtful approaches.
Without such a well-organized effort to uti-
lize the considerable information in this
database in a rigorous and comprehensive
manner in the context of risk assessment
but not exceeding the limits of the experi-
mental and theoretical database, it will not
be possible to draw any definitive conclu-
sions as to the carcinogenic potential of
EMF or to define an efficient research agen-
da aimed at clarifying uncertainties.

The NRC Committee on Science and
Judgment in Risk Assessment (23) recom-
mended what they termed an iterative
approach to risk assessment. This recom-
mendation is consistent with the perspec-
tive we have taken in this review, although
we use the term "iterative" in a somewhat
broader sense than that used by the NRC
committee. We intend the term to imply
that strategies for EMF should take a broad
view of risk assessment as a collection of
associated activities, some of which may be
appropriate to undertake given the current
state of the EMF database, some of which
may require additional research efforts
prior to being undertaken, and some of
which may simply be inappropriate. When
there is a need to make regulatory deci-
sions, as the EPA has pointed out (24), it
may be difficult to fully apply these princi-
ples. However, in the case of EMF, despite
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the large database of information on poten-
tial health effects, the process is still in
some sense in a fact-finding mode. Thus, at
this point, one risk assessment goal may
simply be to assess the adequacy of the
experimental database for the purposes of
conducting a comprehensive hazard assess-
ment. For example, in the absence of
empirical justification for the selection of a
default dose metric, risk assessment strate-
gies for EMF may adopt an approach in
which a small number of simple default
measures related to areas of environmental
concern are selected (such as applied time-
average field strength) and the adequacy of the
biological effects database for a hazard assess-
ment using those dose metrics is assessed. The
resulting hazard assessment could either be
used as a basis for a risk assessment, which
would help to define the risk range excluded
from environmental concern based on the cur-
rent testing matrix, or to define areas in which
additional testing is desirable. Additionally,
some aspects of the current database may also
permit certain other risk assessment activities
to be performed. Even if some calculations are
not justified by the data, it may be appropriate
to carry out certain other analytical proce-
dures, such as calculations to compare results
in animal bioassays and human epidemiologic
studies or to compare EMF exposures in assays
measuring nontumor and tumor end points.

While it is not our intent to select a risk
assessment strategy for EMF, based on dis-
cussion in the text we offer several sugges-
tions below that may help to guide a
process aimed at developing such a strategy.

First, while epidemiologic studies
appropriately play an important role in
hazard identification aimed at establishing
the presence of a potent effect, a hazard
identification aimed at establishing the pos-
sibility of weak or null effects, such as may
be associated with EMF at environmental
exposures, may have to assign greater
weight to results of animal studies and
other in vivo and in vitro sources of infor-
mation. Although animal cancer bioassays
suffer from statistical limitations and issues
of relevancy to humans must be considered
in interpreting results of assays in nonhu-
man systems, the ability to conduct these
studies under controlled laboratory condi-
tions using a wide range of defined expo-
sures makes them uniquely valuable.

Second, because of the possibility that
children may be at greater risk than adults
from exposure to EMF, we recommend
that a default factor to account for possible
age differences in sensitivity to carcinogen-
esis be induded in an EMF risk assessment.

Third, current evidence does not justify
the use of any dose-response extrapolation
procedure in conjunction with an EMF

risk assessment. The inclusion of such a
procedure will require new experimental
evidence of a dose-response effect on
tumorigenesis or a cancer-related biological
process, or a viable mechanistic hypothesis.

Fourth, it is likely that a plausible argu-
ment may be constructed, based primarily on
the apparent lack ofDNA reactivity ofEMF,
to justify the use ofsimple measures ofpoten-
cy that do not involve extrapolation below
the experimentally observable range (Table 2)
and risk characterization metrics such as the
MOE (Table 3), as recommended by EPA
for so-called nonlinear carcinogens.

Finally, the development of any risk
assessment strategy for EMF should take
into account the fact that the current cli-
mate of risk assessment is much less formu-
laic than in previous years. As we have
emphasized in this review, there is a much
greater openness on the part of agencies
such as the EPA to accommodate new
approaches and agent-specific methodology.
The use of nontumor data is probably the
most exciting recent development in risk
assessment (Table 5). Consistent with the
limitations of the EMF health effects data-
base, it will be important to explore ways
that such data might be incorporated into
risk assessment strategies. Risk assessment is
now much more research driven and,
importantly, also research-driving than in
the past. Thus, an iterative risk assessment
strategy should indude not only procedures
aimed at summarizing existing information
in a way that informs as to potential health
risks but it should also indude information
that defines data gaps and research needs
appropriate to a more complete assessment.
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